skip to main content


Search for: All records

Creators/Authors contains: "Shaw, Stephen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The accurate estimation of plant transpiration is critical to the fields of hydrology, plant physiology and ecology. Among the various methods of measuring transpiration in the field, the sap flow methods based on head pulses offers a cost-effective and energy-efficient option to directly measure the plant-level movement of water through the hydraulically active tissue. While authors have identified several possible sources of error in these measurements, one of the most common sources is misalignment of the sap flow probes due to user error. Though the effects of probe misalignment are well documented, no device or technique has been universally adopted to ensure the proper installation of sap flow probes. In this paper we compare the magnitude of misalignment errors among a 5 mm thick drilling template (DT), a 10 mm thick DT, and a custom designed, field-portable drill press. The different techniques were evaluated in the laboratory using a 7.5 cm wood block and in the field, comparing differences in measured sap flow. Based on analysis of holes drilled in the wood block, we found that the portable drill press was most effective in assuring that drill holes remained parallel, even at 7.5 cm depth. In field installations, nearly 50% of holes drilled with a 5 mm template needed to be redrilled while none needed to be when drilled with the drill press. Widespread use of a portable drill press when implementing the heat pulse method would minimize alignment uncertainty and allow a clearer understanding of other sources of uncertainty due to variability in tree species, age, or external drivers or transpiration.

     
    more » « less
  2. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    An often unglamorous, yet critical, part of most millimeter/submillimeter astronomical instruments is cryogenic temperature monitoring and control. Depending on the operating wavelength of the instrument and detector technology, this could be stable temperatures in the Kelvin range for millimeter heterodyne systems to 100 mK temperatures at sub-micro-Kelvin stability as for many submillimeter bolometer systems. Here we describe a project of the HARDWARE.astronomy initiative to build a low-cost open-source temperature monitoring and control system. The HARDWARE.astronomy Housekeeping Box, or H.aHk Box (pronounced “hack box”) is developed primarily by undergraduates and employs existing open-source devices (e.g Arduino, Raspberry Pi) to reduce costs while also limiting the complexity of the development. The H.aHk Box features a chassis with a control computer and ten expansion slots that can be filled with a variety of expansion cards. These cards include initially an AC 4-wire temperature monitor and PID control cards. Future work will develop 2-wire temperature monitors, stepper motor controller, and high-power supply. The base-system will also be able to interface with other house-keeping systems over USB, serial port and ethernet. The first deployment of the H.aHk Box will be for the ZEUS-2 submillimeter grating spectrometer. All designs, firmware, software and parts list will be published online allowing for other projects to adopt the system and create custom expansion cards as needed. Here we describe the design (including mechanical, electrical, firmware, and software components) and initial performance of the H.aHk Box system with initial AC/DC 4-wire and PID cards. 
    more » « less